

CALCULATION POLICY Stotfold • Arlesey • Fairfield Park

This calculation policy is part of the work of a wider collaboration to offer the best transition for pupils between Lower and Middle

SAF Calculation Strategies

Schools with the ultimate goal of enhanced outcomes at the end of the Primary Phase (Yr6). It has been written and developed with involvement from all the math's subject leaders and relevant colleagues from the six schools in the SAF group: Etonbury Academy, Pix Brook Academy, Fairfield Park, Gothic Mede Academy, Roecroft Lower School and St Mary's Church of England Academy Stotfold. It has been developed from a number of national sources of best practice and reflects the current higher expectations of maths in the Primary Phase.

The policy sets out, year group by year group, the progression of calculation methods (addition, subtraction, multiplication and division) expected for the Primary Phase.

Understanding the document:
While this document has been developed for use by teachers in school, we hope that parents and carers will, with a few explanations, find it helpful in supporting maths activities with their child at home. The methods in this document are not exhaustive and from time to time teachers may use alternative methods which are better suited to your child's understanding and development at a given point in time.

The headings for each stage of development are:
Concrete - here the expectation is that a student would use equipment or manipulative techniques e.g. counters, blocks, compare bears, Numicom to develop their understanding of a concept.

This leads to ...
Pictorial - these strategies begin to move away from sole use of equipment to develop the written calculation. This could include jottings or illustrations of the concept being taught. It might involve words or images which reflect the student's working through a particular calculation. It could also include informal methods that assist in 'proving' a concept to the student.

This leads to
Abstract - this shows the formal method of representing a calculation as agreed by all the schools involved. It is the average, end of year expectation. Some children may access these methods before the end of a given year while others will continue to develop their understanding through either Pictorial or Concrete methods. The 'Abstract' methods will probably look most familiar to how we as parents and carers view or represent mathematical calculations.

If your child has not yet developed a clear understanding of the 'Abstract' for their year group, you may find that they are using the 'Abstract' method from the previous year as a bridge to moving from the informal to expected formal method.

Objectives, strategies and vocabulary:

This indicates the method and strategy being described. There is a list of the key vocabulary to be used with this method.

Concrete:

This section gives suggestions on manipulatives, equipment and techniques which colleagues may wish to use to develop understanding. This is not a definitive list.

Pictorial/Jottings:

When the children are ready they can move onto this section. The children will move away from using manipulatives and begin to use pictures/ jottings to help them calculate their answers.

Headings:

Each page indicates the year group and strategy. For ease of use each operation is a different colour.

Abstract:

This is the agreed formal method of calculation;
it is also the average end of year expectation.

SAF Calculation Policy Overview

EYFS

The objective for those working in Early Years is to ensure that all children develop firm mathematical foundations in a way that is engaging, and appropriate for their age. There are six key areas of early mathematics learning, which collectively provide a platform for everything children will encounter as they progress through their maths learning at primary school, and beyond:

- Cardinality and Counting

Understanding that the cardinal value of a number refers to the quantity, or 'howmanyness' of things it represents. To help children to develop a strong understanding of cardinality, they are taught to subitise.

- Subitising

Children learn to recognise the number of objects in a group (up to five) without counting, through 'hidden objects' games and games using dice and dominoes. It is important that children develop strong images of familiar patterns, such as those on dice, but also that they see small numbers arranged in unfamiliar patterns.

- Comparison

Understanding that comparing numbers involves knowing which numbers are worth more or less than each other

- Composition

Understanding that one number can be made up from (composed from) two or more smaller numbers

- Pattern

Looking for and finding patterns helps children notice and understand mathematical relationships

- Shape and Space

Understanding what happens when shapes move, or combine with other shapes, helps develop wider mathematical thinking

- Measures
- Comparing different aspects such as length, weight and volume, as a preliminary to using units to compare later

More information about these six key areas can be found at: https://www.ncetm.org.uk/in-the-classroom/early-years/

	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
Addition	Combining two parts to make a whole: part whole model. Starting at the bigger number and counting on. Regrouping to make 10.	Adding three single digits. Partitioning method.	Start with: Column method - no regrouping. Moving to: Column methodregrouping. (up to 3 digits)	Column methodregrouping. (up to 4 digits)	Column methodregrouping. (with more than 4 digits) (Decimals- with the same amount of decimal places)	Column methodregrouping. (Decimals- with different amounts of decimal places)
Subtraction	Taking away ones Counting back Find the difference Part whole model Make 10	Counting back and find the difference using number lines. Part whole model Make 10	Start with: Column method-no regrouping Move to: Column method with regrouping. (up to 3 digits)	Column method with regrouping. (up to 4 digits)	Column method with regrouping. (with more than 4 digits) (Decimals- with the same amount of decimal places)	Column method with regrouping. (Decimals- with different amounts of decimal places)
Multiplication	Doubling Counting in multiples Arrays (with support)	Doubling Counting in multiples Repeated addition Arrays- showing commutative multiplication	Counting in multiples Repeated addition Arrays- showing commutative multiplication Grid method	Column multiplication (2 and 3 digit multiplied by 1 digit)	Column multiplication (multi digit up to 4 digits by a 2 digit number)	Column multiplication (multi digit up to 4 digits by a 2 digit number)
Division	Sharing objects into groups Division as grouping	Division as grouping Division within arrays	Division within arrays Division with a remainder	Division within arrays Division with a remainder Short division (up to 3 digits by 1 digit- concrete and pictorial)	Short division (up to 4 digits by a 1 digit number interpret remainders appropriately for the context)	Short division Long division (up to 4 digits by a 2 digit numberinterpret remainders as whole numbers, fractions or round)

	jectives, Strategies \& Vocabulary	Concrete	P Pictorial/Jottings	A Abstract
	EYFS Method Plus Estimate Add More And Total Make Altogether Double One more, two more, ten more How many More make..? How many more is.. than..? Same as	If available, Numicon shapes are introduced straight away and can be used to: - Identify 1 more/less - Combine pieces to add - Find number bonds - Add without counting Children can begin to combine groups of objects using concrete apparatus: Five and tens frames are used to support with addition, with the composition of number and with number bonds to 5 and 10: Children solve simple problems using fingers Number tracks can be introduced to count up on and to find one more: 112345678910	Children may make a record in pictures, words or symbols of their addition activities.	Children are encouraged to read number sentences aloud in different ways, usually using numbers between 1 and 20 e.g. 'three add two equals 5 ", " 5 is equal to three and two" "five is the same as three and two",

	jectives, Strategies \& Vocabulary	Concrete	Pictorial/Jottings	Abstract
	Take (away) Subtract Estimate Leave How many are left/ left over? How many have gone? One less, two less, ten less How many fewer is...than..? Difference between The same as jumping back	Children begin with mostly pictorial representations or real contexts. Concrete apparatus is used to relate subtraction to taking away and counting how many objects are left. Concrete apparatus models the subtraction of 2 objects from a set of 6 . Solve simple problems using fingers. Number tracks can be introduced to count back and to find one less: What is 1 less than 9 ? 1 less than 20? (1) $2 3 4 5 \longdiv { 6 7 8 9 1 0 }$ Number lines can then be used alongside number tracks and practical apparatus to solve subtraction calculations and word problems. Children count back showing hops back on the number back. Children will need opportunities to look at and talk about different models and images as they move between representations.	Construct number sentences using cards to go with practical activities. Children make a record in pictures, words or symbols of subtraction activities.	Children are encouraged to read sentences aloud in different ways "five subtrac \dagger one leaves four", "four is equal to five subtract one", "four is the same as five subtract one"

	jectives, Strategies \& Vocabulary	Concrete	Pictorial/Jottings	
	Lots of Groups of Times Once, twice, three times..ten times ...times as (big, long, wide...and so on) Repeated addition Double Estimate Add again and again	If available, Numicon is used to visualise the repeated adding of the same number. Real life contexts and use of practical equipment to count in repeated groups of the same size: How many wheels are there altogether? How much money do I have? Count in twos, fives, tens both aloud and with objects.	Children begin with mostly pictorial representations: How many groups of 2 are there? $2+2+2+2+2$, so 5 groups of 2 .	Children are given multiplication problems set in a real life context. Children are encouraged to visualise the problem. How many fingers on two hands? How many sides on three triangles? How many legs on four ducks?

SAF Calculation Strategies

	jectives, Strategies \& Vocabulary	Concrete	Pictorial/Jottings	A Abstract
	Combining two parts to make a whole: part-whole model. Addition, add, forwards, put together, more than, total, altogether, distance between, counting on, equals = same as, counting on, pattern.	Numicon: Numicon and ten-frame resources can provide the first step into understanding 2-digit numbers. It will be useful at this point to introduce children to Base 10 resources and use then to partition 'teen' numbers into tens and ones.		Through all of the stages, children should start to recognise the relationship between addition and subtraction.

	jectives, Strategies \& Vocabulary	Concrete	Pictorial/Jottings	Abstract
	Starting at the bigger number and counting on.	5 and 1 more is 6 $1,2,3,4,5 \ldots \ldots \ldots . .6$ Start with the larger number on the bead string and then count on to the smaller number 1 by 1 to find the answer. $=11$ Eventually, as children become more competent they will be able to hold the biggest number in their head and then count onperhaps using their fingers- from there.	$12+5=17$ Start at the larger number on the number line and count on in ones or in one jump to find the answer.	$5+12=17$ Place the larger number in your head and count on the smaller number to you answer.
	Regrouping to make 10.	Start with the bigger number and use the smaller number to make 10. $6+5=11$	Use pictures or a number line. Regroup or partition the smaller number to make 10 . $9+5=14$ 14	$7+4=11$ If I'm at 7 , how many more do I need to make 10? How many more do I add on now?

	jectives, Strategies \& Vocabulary	Concrete	Pictorial/Jottings	Abstract
$\begin{aligned} & \widehat{\beta} \\ & \stackrel{1}{n} \\ & \underline{y} \end{aligned}$	Taking away ones -, subtract, subtraction, take away, minus, less than, most, least, distance between, difference between, equals = same as, digit.	Use physical objects, counters, cubes etc. to show how objects can be taken away. $6-2=4$	Cross out drawn objects to show what has been taken away. $15-3=12$	$\begin{gathered} 8-2=6 \\ 18-3=15 \end{gathered}$
	Counting back	Make the larger number in your subtraction. Move the beads along your bead string as you count backwards in ones. Use counters and move them away from the group as you take them away counting backwards as you go.	Count back on a number line or number track Start at the bigger number and count back the smaller number showing the jumps on the number line.	Put 13 in your head, count back 4. What number are you at? Use your fingers to help.

	jectives, Strategies \& Vocabulary	Concrete	Pictorial/Jottings	d Abstract
	Find the difference	Compare amounts and objects to find the difference. Use cubes to build towers or make bars to find the difference. Use basic bar models with items to find the difference.	$11=5=$ 0 ITP Difference Count on to find the difference.	Hannah has 23 sandwiches, Helen has 15 sandwiches. Find the difference between the numbers of sandwiches.
	Part Part Whole Model	Link to addition - use the part whole model to help explain the inverse between addition and subtraction. If 10 is the whole and 6 is one of the parts. What is the other part? $10-6=$	Use a pictorial representation of objects to show the part whole model.	5 10 Move to using numbers in the part whole model.

	jectives, Strategies \& Vocabulary	Concrete	Pictorial/Jottings	Abstract
	Doubling Ones, groups of, lots of, doubling, repeated addition, groups of, lots of, times, columns, rows, longer, bigger, higher, times as (big, long, wide... etc.), array.	Use practical resources to show how to double a number. $6+6=6 \times 2=12$	Draw pictures to show how to double a number. Double 4 is 8	Know that doubling a number is the same as two lots of the same number.
	Counting in multiples	Count in multiples supported by concrete objects in equal groups.	Use a number line or pictures to continue to support in counting in multiples.	Count in multiples of a number aloud. Write sequences with multiples of numbers. $0,2,4,6,8,10 \ldots$ $0,5,10,15,20,25,30 \ldots$ $0,10,20,30,40,50 \ldots$

	jectives, Strategies \& Vocabulary	Concrete $\quad \square$	Pictorial/Jottings
	Arrays (with support)	Arrays will be used to help children visualise and underst These everyday items, arranged in rows and columns, highlight an important multiplication fact to the children that multiplication can be done in any order (commutative). Here is an array. There are 2 rows of 4 counters. There are 8 altogether. Can you arrange the counters in a different way so there are a different number of equal rows? Can you do the same with 15 counters?	tand multiplication and division. How many questions can you write about the gingerbread men? e.g. How many buttons? Make a word problem/story about : the equal groups in the pictures Harry has 3 friends. Each friend gives him 5 sweets. How many sweets does he have altogether?

	bjectives, Strategies \& Vocabulary	Concrete	Pictorial/Jottings	A Abstract
	Sharing objects into groups Share, share equally, one each, two each, group, groups of, lots of, arrays.	I have 10 cubes. Can you share them equally in 2 groups? ver	Children use pictures or shapes to share quantities.	Share 9 buns between three people. $9 \div 3=3$
	Division as grouping	Divide quantities into equal groups. Use cubes, counters, objects or place value counters to aid understanding.	serverererviera $10 \div 2=$	

	jectives，Strategies \＆ vocabulary	Concrete	Pictorial／Jottings	Abstract
$\begin{aligned} & \widehat{\mathfrak{D}} \\ & \underline{y} \end{aligned}$	Adding 3 single digits． ＋，add，addition， more，plus，make，sum， total，altogether， how many more to make．．．？ how many more is．．． than．．．？＝， is the same as，tens， ones，partition， more than， one more，two more， ten more， one hundred more	$4+7+6=17$ Put 4 and 6 together to make 10. Add on 7. $8 \text { 閏 }+2+5$ 用田 $8+2+5=15$ （ $8+2=10$	Add together three groups of objects．Draw a picture to recombine the groups to make 10. $8+4+2=$	$\begin{aligned} (4+7+6 & =10+7 \\ 10 & =17 \end{aligned}$ Combine the two numbers that make 10 and then add on the remainder．
	Column method－ no regrouping	Initially，the children may use base 10 equipment to partition numbers in their tens and ones and then add them separately． $24+15=$ Add together the ones first then add the tens．Use the Base 10 blocks first before moving onto place value counters．	After practically using the base 10 blocks and place value counters，children can draw the counters or base 10 to help them to solve additions．	$\begin{aligned} & 24+15= \\ & 4+5=9 \\ & 20+10=30 \\ & 30+9=39 \end{aligned}$ When children are secure using the concrete method using concrete manipulatives and pictorially，they can move on to the abstract method：

	jectives, Strategies \& vocabulary	Concrete	Pictorial/Jottings	Abstract
	Counting back -, subtraction, subtract, take away, difference, difference between, minus, less than, one less, two less, ten less, one hundred less	Make the larger number in your subtraction. Move the beads along your bead string as you count backwards in ones. Use counters and move them away from the group as you take them away counting backwards as you go.	Count back on a number line or number track Start at the bigger number and count back the smaller number showing the jumps on the number line. This can progress all the way to counting back using two 2 digit numbers.	Put 13 in your head, count back 4. What number are you at? Use your fingers to help. $57-23=$ Put 57 in your head, count back two steps of 10 and then three 1 s.

SAF Calculation Strategies

Find the difference	Compare amounts and objects to find the difference. Use cubes to build towers or make bars to find the difference. Use basic bar models with items to find the difference.	Count on to find the difference. Draw bars to find the difference between 2 numbers. Comparison Bar Models Lisa is 13 years old. Her sister is 22 years old. Find the difference in age between them.	Hannah has 23 sandwiches, Helen has 15 sandwiches. Find the difference between the numbers of sandwiches. $56-\square=51$

	jectives, Strategies \& vocabulary	Concrete	Pictorial/Jottings	Abstract
	Part Whole Model	Link to addition- use the part whole model to help explain the inverse between addition and subtraction. If 10 is the whole and 6 is one of the parts. What is the other part? $10-6=$	Use a pictorial representation of objects to show the part whole model.	Move to using numbers in the part whole model and bar model.

Make 10	$14-5=$ Make 14 on the 10 frame. Take away the 4 first to make 10 and then takeaway 1 more so you have taken away 5. You are left with the answer of 9. Show how you partition numbers to subtract. Again make the larger number first. $36-14=22$	Start at 13. Take away 3 to reach 10. Then take away the remaining 4 so you have taken away 7 altogether. You have reached your answer.	$16-8=8$ How many do we need to take off to reach the next 10 ? How many do we have left to take off?

Objectives, Strategies \& Vocabulary		Concrete	λ Pictorial/Jottings	- Abstract
	Doubling	Use practical resources to show how to double a number.	Draw pictures to show how to double a number.	$6+6=6 \times 2=12$
$\begin{aligned} & \widehat{\infty} \\ & \mathfrak{O} \\ & \end{aligned}$	x, multiple, multiplication array, multiplication table/facts, groups of, lots of, times, columns, rows, group in pairs, $2 s, 3 s, 5,10 s$ etc.		Double 4 is 8	 Partition a number and then

			double each part before recombining it back together.
Counting in multiples	Count in multiples supported by concrete objects in equal groups.	Use a number line or pictures to continue to support in counting in multiples.	Count in multiples of a number aloud (forwards and backwards). Write sequences with multiples of numbers. $\begin{aligned} & 2,4,6,8,10 \ldots \\ & 3,6,9,12,15 \ldots \\ & 5,10,15,20,25,30 \ldots \\ & 10,20,30,40,50 \ldots \end{aligned}$ Knowledge of the 2 times table will enable children to count in $20 s, 5 s$ in 50 s etc.

Objectives，Strategies \＆ vocabulary		Concrete	Pictorial／Jottings	Abstract
	Repeated Addition	由田田 $5+5+5$ $3+3+3$	There are 3 plates．Each plate has 2 star biscuits on．How many biscuits are there？ $5+5+5=15$ $6 \times 4=$ ？ 6 lots of 4 $6 \times 4=24$	Write addition sentences to describe objects and pictures． Some children may be able to use a blank number line to record their mental processes．
	Arrays－showing commutative multiplication	Arrays will be used to help children visualise and understand multiplication and division． These everyday items，arranged in rows and columns，highlight an important multiplication fact to the children：that multiplication can be done in any order （commutative）． Create arrays using counters／cubes to show multiplication sentences．		Use an array to write multiplication sentences and reinforce repeated addition． $\begin{aligned} & 5+5+5=15 \\ & 3+3+3+3+3=15 \\ & 5 \times 3=15 \\ & 3 \times 5=15 \end{aligned}$

	ctives, Strategies \& Vocabulary	Concrete	Pictorial/Jottings	Abstract
	Division as grouping \div, divide, divided by, divided into, shared into, columns, rows, groups of	Divide quantities into equal groups. Use cubes, counters, objects or place value counters to aid understanding. When grouping, you count the number of groups you have made. For instance, $15 \div 3=5$ can be viewed as 'How many groups of 3 are there in 15? '	serererereverer ITP Grouping Use a number line to show jumps in groups. The number of jumps equals the number of groups. Think of the bar as a whole. Split it into the number of groups you are dividing by and work out how many would be within each group.	$28 \div 7=4$ Divide 28 into 7 groups. How many are in each group? Miss Smith needs $\mathbf{3 0}$ apples for her class. There are $\mathbf{5}$ apples in each bag. How many bags of apples does Miss Smith need altogether?
	Division within arrays	Link division to multiplication by creating an array and thinking about the number sentences that can be created. E.g. $\begin{array}{ll} 15 \div 3=5 & 5 \times 3=15 \\ 15 \div 5=3 & 3 \times 5=15 \end{array}$	Draw an array and use lines to split the array into groups to make multiplication and division sentences.	Find the inverse of multiplication and division sentences by creating four linking number sentences. $\begin{aligned} & 7 \times 4=28 \\ & 4 \times 7=28 \\ & 28 \div 7=4 \\ & 28 \div 4=7 \end{aligned}$

	ectives, Strategies \& Vocabulary	Concrete	Pictorial/Jottings	Abstract
	Column method with regrouping (up to 3 digits)	Use Base 10 to start with before moving on to place value counters. Start with one exchange before moving onto subtractions with 2 exchanges. Make the larger number with the place value counters Calculations 234 \qquad Start with the ones, can I take away 8 from 4 easily? । need to exchange one of my tens for ten ones. Now I can subtract my ones. Now look at the tens, can I take away 8 tens easily? I need to exchange one hundred for ten tens. Now I can take away eight tens and complete my subtraction Show children how the concrete method links to the written method alongside your working. Cross out the numbers when exchanging and show where we write our new amount.	Draw the counters onto a place value grid and show what you have taken away by crossing the counters out as well as clearly showing the exchanges you make. When confident, children can find their own way to record the exchange/regrouping. Just writing the numbers as shown here shows that the child understands the method and knows when to exchange/regroup.	Moving forward the children use a more compact method. $\begin{gathered} 728-582=146 \\ 6 H 128 \\ -482 \\ -58 \\ \hline 1466 \\ \hline \end{gathered}$ A common misconception: Pupils sometimes begin subtracting with the left hand column first. In tens and ones and other formal vertical subtraction calculations, children sometimes take the smaller digit from the larger, regardless of whether it is part of the larger or smaller number. e.g. 945 $-\frac{237}{712}$

SAF Calculation Strategies

	jectives, Strategies \& vocabulary	Concrete	Pictorial/Jottings	Abstract
	Column method with regrouping +, add, addition, more, plus make, sum, total, altogether, score, double, near double, one more, two more... ten more... one hundred more how many more to make ...? how many more is... than ...? how much more is...? Carry Estimate Equals Number bonds Boundary Inverse		When adding Decimals - partition number to be added into manageable steps using number bonds to 10 and add using a number line (building on previous knowledge of adding in this way).	Year 5 - Column method- regrouping. (with more than 4 digits) (Decimals- with the same amount of decimal places) Year 6 - Column method- regrouping. (Decimals- with different amounts of decimal places) Once this has been mastered, pupils move onto expanded column. Once all the digits have been added, the answer should be written underneath. Emphasis should be put on the place value so that children understand what they are adding (for example the first question should be phrased as fifty add seventy, not five add seven). Once expanded method has been mastered, pupils move quickly onto compact method. Digits in the smallest place value column should be added first. As with other methods, emphasis should be put on the place value of the digits being used. $\begin{array}{lr} \text { E.g. } 4626+1573 \\ \begin{array}{r} 4426 \\ +1573 \end{array} & 20 \cdot 01 \\ \hline 5999 & +0 \cdot 56 \\ \hline 24 \cdot 87 \end{array}$ When digits are carried they should be written below the question.

	jectives, Strategies \& vocabulary	Concrete	Pictorial/Jottings	Abstract
	Column method with regrouping subtract, take (away), minus, leave, difference, decrease how many are left/left over? one less, two less... ten less... one hundred less how many fewer is... than ...? how much less is...? difference between half, halve =, equals, sign, is the same as, exchanging, carrying, partitioning How many have gone? Fewer, difference between, missing numbers, boundary. Inverse.		Pupils should use a number line to count up from the smallest number to the largest. They should aim to get to a multiple of 10 , 100 or 1000 to make the working out easier. $\text { E.g. } 74-27$ $40+4+3=47$	Year 5 - Column method with regrouping. (with more than 4 digits) (Decimals - with the same amount of decimal places) Year 6 - Column method with regrouping. (Decimals - with different amounts of decimal places) Pupils should write the first number un-partitioned and then write the number to be subtracted underneath, making sure to keep the place value columns correct. Borrowing should be done in the same way as expanded columns. The digits will still be referred to using their correct place value, so in the example below you would move ten out of the eighty to make it seventy, the ten moves to join the two to give twelve. $\begin{aligned} & \text { E.g. } 582-455 \\ & \begin{array}{r} 5^{7} 8^{12} \\ -455 \\ \hline 127 \\ \hline \end{array} \\ & \hline \end{aligned}$ When pupils have reached this point they should be able to subtract decimals (including those with a mixed number of digits) as well as more than one number.

Objectives, Strategies \& vocabulary		Concrete	Pictorial/Jottings					
	Column method (long) lots of, groups of x, times, multiplication, multiply, multiplied by multiple of, product once, twice, three times, four times, five times... ten times... times as (big, long, wide and so on) repeated addition array row, column double, exchanges factor product halving, doubling number patterns multiplication table inverse square, cube			Once pupils have a firm understanding of addition using formal columns, including carrying digits into the next column, they should begin to use short multiplication to multiply by 1 digit. The smallest units should always be multiplied first. Where an answer to a multiplication is a 2 digit answer, the largest digit should be 'carried' into the next column and written in a smaller font below the question, where it can be added on.				
						H	o	
							4	
					\times		5	
						1	0	
						H	T	0
						2	4	5
					\times			4
						9	8	0
						1	2	

SAF Calculation Strategies

	jectives, Strategies \& vocabulary	Concrete	Pictorial/Jottings	Abstract
	Bus stop (with remainders)		This can be shown on a number line if not ready for the bus stop method. $115 \div 4=$ $10+10+5+2+1=28 \text { r } 3$	Year 5 - Short division (up to 4 digits by a 1 digit number Interpret remainders appropriately for the context) Year 6 - Short division Long division (up to 4 digits by a 2 digit number-interpret remainders as whole numbers, fractions or round) Pupils will be expected initially to use short division. Pupils will begin by dividing the highest digit in the large number by the divisor. $362 \div 7=$ When the final answer is achieved, any remainders should be written after the answer. Pupils should start by dividing numbers with no remainders. $362 \div 7=51 \text { r5 }$ Pupils will also be expected to use the short division method to divide by 2-digit numbers. In these cases, pupils will write out the first five times table of the divisor (can use a partitioning method). $\begin{aligned} & \text { E.9. } 3822 \div 12 \\ & \qquad \begin{array}{l} 318 \\ 1 2 \longdiv { 3 8 ^ { 2 } 2 2 } \end{array} \end{aligned}$

	jectives, Strategies \& vocabulary	Concrete	Pictorial/Jottings	Abstract
	Bus stop method (with remainders) (Long)		Short and long division can be used to divide decimal numbers as well; children simply need to remember to put the decimal point in exactly the same position on the answer line as it is in the question.	Children should have an understanding of how to change remainders into fractions. In this example: $19 \div 6=3 \mathrm{r} 1$ the remainder can be turned into a fraction by continuing to divide it by 6 . $19 \div 6=31 / 6$ Children can also express a remainder as a decimal. When using either short or long multiplication, by adding a decimal point and a zero to the number being divided, we are able to carry on the calculation. They must also remember to add a decimal point to the answer line, in the same position as the one in the question. It might be that the children will be presented with an example where they need to add more than one zero on to the number being divided.

